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A hierarchical random process can be characterized by a scaling probability distribution describing
the stochastic multiplicative process occurring at each generation. Replica averages of the associated
random partition functions yield multifractal spectra 7(q,n) dependent on the number of members » in
the replica average chosen, with the exponents generated by quenched (n =0) and annealed (n =1)
averaging being but two points in this continuous spectrum. As a consequence the a versus f(a)
description has to be generalized for stochastic multifractals. Robust properties of these multifractal
spectra, including the position and singularities of generalized dimensions at phase transitions, spectral
inequalities and asymptotics, and the scaling behavior of minimal probabilities, are found to depend on
universal properties of the scaling probability distribution, specifically on the form of singularities in the
distribution, the strength of correlations between measure and length scale during fragmentation, and
whether or not the process is conservative. We apply our approach to both the mass and growth scaling
probability distributions for diffusion-limited aggregation and show that their construction is Markovi-
an, but while the mass measure is log normal, the singularities in the growth measure do not obey the
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central limit theorem.

PACS number(s): 05.40.+j, 64.60.Ak, 61.43.Hv

I. INTRODUCTION

Some of the most intriguing and yet least understood
structures that make an appearance in physics far from
thermal equilibrium appear to be stochastically self-
similar. These structures include diffusion-limited aggre-
gates [1,2], percolating networks [3-5], and the dissipa-
tion and passive scalar fields in the inertial range of tur-
bulence [6-10].

Not only are the structures fascinating to look at, but
they control a surprising variety of physical phenomena.
Thus diffusion-limited aggregation [11] (DLA) appears to
be the basic paradigm for such apparently diverse phe-
nomena as two fluid flow in porous media [12], electro-
chemical deposition [13,14], dielectric breakdown [15],
and retinal vasculature [16]. Percolation theory has been
invoked to account for epidemics and forest fires [17],
kinetic gelation in the sol-gel transition [18], fluid flow in
porous media by invasion percolation [19-21], as well as
aspects of disordered transport including diffusion on and
the conductivity of random resistor networks [22-25],
and the elastic properties of random networks [26,27].
Turbulent flows control phenomena as varied as the
anomalous diffusion observed at high Reynolds numbers
[28,29], the breakup of large scale fluid inhomogeneities
during mixing processes [30] including the interesting
case of critical binary mixtures [31,32], the structure of
clouds [33,34], and the scattering of light and sound
waves due to the spatial and temporal fluctuations in-
duced in passive scalars by the turbulent flow [35-37].

The observed self-similarity in structure and physical
properties can be understood in each case in terms of the
existence of a multifractal measure [8,38-40] such as the
growth probability distribution in the case of DLA
[41,42], the current fluctuations in random resistor net-
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works [25], or the velocity fluctuations in a turbulent flow
field [9,10,43].

This distribution can be found experimentally by cov-
ering the structure of outer length scale L with boxes of
size [ and counting the measure y;(!) in each box i. The
scaling properties of the distribution can then be found in
the multifractal formalism in terms of the Renyi
dimensions [44,38] D, from the partition function Z,

==, (DI~ /L) ~(1 /L) s,

Another approach [45,46] to characterizing multifrac-
tal measures is in terms of the number of measure
singularities N (a,!)=p(a)(l/L)~7® of strength u(l)
~(l/L)*. Mathematically the descriptions are simply
Legendre transformations of one another, but physically
the f (a) versus a description suggests the existence of in-
tertwined sets with fixed singularity a and associated
fractal dimension f (a).

The introduction of the thermodynamic formalism for
multifractals [47,48] allowed the language and more im-
portantly the ideas of statistical mechanics to be applied
to multifractals. For example, equating the partition
function in the multifractal formalism with that in statist-
ical mechanics implies analogies [49] between the inverse
temperature B and g, the free energy F(B) and 7(q), the
energy E and a, and the entropy S(E) and f (a).

The concept of phase transitions can also be
transferred from statistical mechanics to describe mul-
tifractal behavior [50]: thus singularities in F(B) suggest
that similar singularities may be found in the 7(q) spec-
trum, and the complete scaling spectrum between
— o <g <o may disappear to be replaced, if a mul-
tifractal phase transition occurs, by a partial spectrum
for (q) existing only for g > gpoom O § <qyp- Indeed,
such singularities have been found in both random resis-
tor networks [25] and DLA [51-54].
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An important feature of the work on DLA has been
the observed dependence of multifractal phase transitions
on the nature of the average taken. Using exact
enumeration techniques over an annealed ensemble of all
clusters, Lee and Stanley [51] suggested that for
9 <Gpottom = — 1.0 multifractal scaling breaks down.
Trunfio and Alstrgm [53] considered the distribution of
growth probabilities in single clusters and proposed that,
in this quenched limit, a first-order phase transition exist-
ed at ¢ =0. This transition at ¢ =0 was confirmed by
careful simulations of quenched partition functions by
Schwarzer et al. [54]. These results emphasize the im-
portance of the averaging process when studying stochas-
tic multifractals, while the thermodynamic formalism
suggests that the methods created specifically to study
disorder in spin glasses may prove fruitful here also.

In spin-glass theory stochasticity in the form of ran-
dom spin-spin interactions J;; in the Hamiltonian
H=3,J;o0,0; mean that the partition function
Z(B,{J;;})=Tre ~PH is itself a random variable. Experi-
mental averages of physical variables in the case of in-
teractions quenched over the time scale of the experiment
can be found from the configurationally averaged free en-
ergy Fo(B)=(—1/B)(InZ)), where ()} denotes a
configurational average over all realizations of the
quenched microscopic interactions. In contrast, if the in-
teractions were annealed, then physical variables would
be calculated from the configurationally averaged parti-
tion function and F ,(B)=(—1/B)In{ Z ).

Unfortunately the average over the quenched random
interactions cannot be performed before the calculation
of the partition function is made because of the interven-
ing logarithm. If, as was first noticed by Edwards and
Anderson [55], one calculates the free energy
F(B,n)=(—1/Bn)In{{Z")) of a configurationally aver-
aged integer number n of replicas instead, then these
averaging processes can be interchanged. The quenched
average can then be calculated provided the analytic con-
tinuation Fy(B)=lim, _oF (B,n) can be made.

We may use replica averages to study stochastic mul-
tifractals also. There is a major difference between the
two fields, however. In spin-glass theory, the form of the
spin Hamiltonian and the probability distribution con-
trolling the random interactions are assumed to be
known. The task is to find the configurationally averaged
free energy in the case of nontrivial random interactions.
The task faced when studying DLA, percolation, or tur-
bulence is that the nature of the hierarchical dynamical
process assumed to be creating the multifractal distribu-
tion remains to a large degree unknown. Consequently
we are in general more interested in the inverse problem
of characterizing the stochastic process creating the mul-
tifractal distribution.

The question is how should these stochastic processes
be characterized? If it is assumed that these physical pro-
cesses are both hierarchical and random, then there will
exist an associated scaling probability distribution (SPD)
which encodes the complete stochastic multiplicative
process at each generation by specifying the probability
of splitting into a given number of fragments of given
measure and length scale. All physical properties of the

dynamics including the multifractal spectra can be re-
created if we are supplied with this SPD. In the language
of algorithmic information theory we have found the
minimal algorithm for the process, or at least a very good
upper bound on its algorithmic complexity.

But how do we find this SPD? The natural way might
be to try and use the information stored in experimentally
determined multifractal spectra. The basic problem with
this approach is that the D, versus g and the associated
f(a) versus a spectrum measure statistical properties of
the underlying multiplicative process, whose shape is
fairly insensitive to sometimes quite large changes in this
hierarchical process. As a consequence this approach has
proved impracticable. Thus it has been shown by Cha-
bra, Jensen, and Sreenivasan [56] in the context of ran-
dom fragmentation that one cannot even extract unambi-
guously the mean number of splittings at each level of
refinement without additional dynamical data or such in-
formation as whether the splitting probabilities are Mar-
kovian. In general many different models may be made,
in each case a multiparameter fit to the spectrum generat-
ed, which in each case can then usually be fitted to within
experimental accuracy to the spectrum. A more produc-
tive approach, therefore, may be to consider whole
classes of multiplicative processes and try to identify
universal properties. This approach is followed in this
paper and is much more in the spirit of dynamical sys-
tems theory where attempts at identifying the specific
mapping associated with a given transition to chaos are
replaced by the identification of various universal routes
to chaos.

For concreteness we shall study a form of random
weighted curdling where the measure and the length scale
splittings are chosen from a Markovian probability distri-
bution at each level of refinement. This class of models is
sufficiently general and rich in structure as to have the
capability of characterizing such diverse phenomena as
the mass and growth distributions in DLA and perhaps
the stochastic vortex fragmentation in turbulence, yet
tractable enough that the influence of universal features
of an SPD on dynamics can be extracted and studied.
Such universal features would include, but not be limited
to, questions such as the relationship between multifrac-
tal phase transitions and singularities in the SPD. The
structure of the paper is therefore as follows.

In Sec. IT we introduce the universality classes for the
scaling probability distributions we wish to examine and
derive the major identities of the theory involving n repli-
ca averages. In Sec. III we concentrate on the behavior
of the fractal and information dimensions as functions of
the replica averages taken. In Sec. IV we show explicitly
that the usual f (a) versus a curves often used to charac-
terize multifractals are only valid for deterministic pro-
cesses and are actually incompatible with stochastic ones.
In Sec. V we concentrate on the exponent inequalities and
their asymptotic forms as functions of the averaging pro-
cess employed. In Sec. VI we study an important set of
universality classes which involve independent stochastic
fragmentation; the structure of the SPD in this case al-
lows an explicit analysis of the dependence of generating
functions for multifractal spectra on splitting multiplici-
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ties. In Sec. VII we emphasize quenched averaging be-
cause of its experimental importance and consider in de-
tail the problem of quenched averages for independent
stochastic fragmentation; the analytic continuation n —0
involved is accomplished by the use of dispersion rela-
tions for the resulting characteristic functions. In Sec.
VIII, we study the relationship between multifractal
phase transitions, the scaling observed in the minimal
measure fragments generated by multiplicative stochastic
processes, and the underlying SPD generating the data;
these relationships are some of the most useful in extract-
ing the singularities of the underlying SPD. In Sec. IX
we consider the consequences of conservation for sto-
chastic multiplicative processes by studying the case of
conserved binary fragmentation in detail. In Sec. X, as
an explicit example of such conserved processes, we con-
sider the SPDs for the mass and growth probability dis-
tribution of DLA; one consequence of the form of these
SPDs for DLA is the explicit appearance of multifractal
phase transitions in the growth multifractal spectrum,
while the much more homogeneous behavior of the mass
spectrum can also be accounted for. Finally, in Sec. XI
we summarize the results of this paper and offer some
concluding remarks.

II. REPLICA AVERAGES
AND SCALING DISTRIBUTIONS

The original Cantor construction for creating a fractal
dust of dimension D =In2/In3 on a line of length /; con-
sisted at the first stage of the construction of dividing the
line into three and throwing out the middle third. This
process was repeated recursively on each subsequent line
segment. Thus at the (N +1)th stage of construction the
remaining 2% portions of the line of length [,3 ™% were
each divided into three and each middle third removed.
Besicovitch, instead of throwing out the middle third, in-
troduced deterministic weighted curdling by associating
an initial measure g, with the line /,, dividing this
measure into three fractions f, f,,f3, and distributing it
conservatively f,+f,+f;=1 onto the three line seg-
ments. The result after repeating this space filling (in
d =1 embedding space) process recursively will be a
singular measure whose fractal dimension, in contrast to
the Cantor construction, is the same as its embedding di-
mension D =1, but whose information dimension is
D,=—[fInf,+f,Inf,+ f3Inf;]/In3. This procedure
was generalized into random weighted curdling by Man-
delbrot [8,57] and studied extensively by Kahane and
Peyriere [58] by making the multiplicative procedure sto-
chastic in both measure fragmentation and length scale
fragmentation. In addition there is no need to associate
the process with a one dimensional embedding space such
as a line, and consequently random weighted curdling has
great flexibility as a descriptor for multiplicative stochas-
tic processes.

Consider an object of initial measure y,,,,, (the measure
could represent the total growth probability measure on a
DLA cluster, the total instantaneous dissipation in some
volume of a turbulent flow, the total current through a

percolation cluster, etc.) embedded in a volume of length
scale /, and dimension d which fragments into a max-
imum of m smaller pieces in a stochastic multiplicative
manner. Each such fragment of the incipient multifractal
is reduced in length scale by different random ratio  and
contains a different fraction f of the measure at the previ-
ous hierarchical level. The word “fragmentation” does
not need to be taken literally here. For example, in a
DLA cluster because of its treelike topology (see Sec. X)
branching will automatically split the total growth proba-
bility of a branch into the growth probabilities on the
subbranches of which the branch considered is composed
(the growth probability on the node itself can be distri-
buted equally among its descent branches) and this is a
form of fragmentation. The number of fragments m may
physically be some small number such as m =2 for a
known binary process as has been suggested is the case
for turbulence [59] or m =2d —1 for DLA on a hypercu-
bic lattice in d dimensions; it is useful, however, not to fix
this parameter here but rather treat it as variable whose
influence on stochastic multifractality needs to be exam-
ined.

After N levels of fragmentation a specific piece of the
developing multifractal can be described by a unique
string a=a;, . . . ,ay with 1 <a; <m. This fragment will
have measure

N
Ha™ Biotal H fai (1)

i=1

and length scale

Iazlonra' . (2)

At this point we make the explicit assumption that this
multiplicative process is Markovian. This is certainly not
the only possibility but, apart from reasons of simplicity,
this class of processes exhibits a theoretical structure that
hopefully is sufficiently rich to accommodate the physical
stochastic multifractals studied to date. Because of the
Markovian nature of the splitting, they are fully de-
scribed by an SPD

P(fl,...,fm;rl,...

) [1df Il dr. » (3)

which describes the fragmentation process at each gen-
eration and can be used to encode the complete stochastic
process, and whose singularities, as we shall show, con-
trol the observed multifractal phase transitions.

The SPD given by Eq. (3) is defined over a 2m dimen-
sional unit hypercube 0<r,<1,0< f, <1, but in general
the physical mechanisms controlling fragmentation will
constrain the manifold on which the SPD is nonzero and
the nature of any singularities on this manifold, thus
defining universality classes. Specifically we identify
three categories which can be used to classify universality
classes: (A) the smoothness or the existence of singulari-
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tiesin P(f, ..., fui71s - . »1y); (B) the degree of corre-
lation in the fragmentation between r and f; and (C) con-
servation laws. These are not unique choices, but do
serve to distinguish major types of physical processes; fu-
ture work may identify additional characteristics which
are particularly useful in describing the stochastic multi-
plicative dynamics of physical processes. Let us discuss
them in more detail.

A. Singularities in the distribution

The classification of singularities in SPDs describing
physical processes such as DLA or turbulence is at
present unknown. Nevertheless, it appears useful to dis-
tinguish two major forms for such SPDs by their smooth-
ness and continuity.

(i) The domain in which the SPD is nonzero is bounded
both below and above: P(f,,...,f .71 -stn)F0
only for r ;. <r, Sro.. and fri = fo < fimax, With finite
values of the probability at the domain boundary and no
singularities in the domain. Thus at each generation the
probability of the measure splitting into infinitesimal
fractions and the associated length scale splitting into
infinitesimal ratios is expressly forbidden as are all frag-
ments whose dimensions are above a certain ratio of the
parents length scale or containing more than a maximal
allowed measure fraction. Let us call this a type A pro-
cess.

(ii) The region in which the SPD is nonzero reaches at
least at some edges of the integration domain and may
contain singularities there. It is such singularities that
generate very strong (r—O0, f finite) and very weak
(f —0, r finite) measure fragments leading to singularities
in the multifractal spectrum. We call this a type B pro-
cess.

B. Correlations in the SPD

Another major feature of SPDs can be expected to be
the nature of correlations between the measure fraction f
and the length scale ratio r.

(i) The extreme limit of strong correlation would be
homogeneous or H stochastic multifractals for which a
given length scale is associated with a given measure
f =g(r) deterministically reducing the 2m dimensional
SPD domain to an m dimensional submanifold. In this
case

P(fis. o s fmsis. -

V)

=P(ry,...,rp) [I 8(fo—g(r,)) . 4
a=1

A scaling homogeneous multifractal process is then a spe-
cial case in which scaling exists between the measure and
length scale g(r)=r2. If in addition the fragmentation
process is conservative (37_,72=1), then we have a
homogeneous fractal process. For this special case, in-
dependent of the SPD and the averaging process, the gen-
eralized dimensions take the value D [see Eq. (21)]. How-
ever, we also need to consider the possibility of cases
where small fragment ratios » —0 carry much less mea-

sure [for example, the stretched exponential form
g(r)~exp —Br "] or much more measure [for example,
the logarithmic form g (r)~1/|In7|*] than expected from
scaling.

(i) The extreme limit of weak correlation would be that
no correlations exist between the measure fraction and
the length scale ratio. Such an extreme limit seems un-
likely on physical grounds. More realistically we can
define independent fragmentation (IF) models in which,
apart from the expected strong correlations, which must
be expected between the measure and the length scale for
a single fragment, the fragmentation probability is in-
dependent

P(fl""7fm;r1""’rm)=1-lP(fa’ra)' (5)
a=1

C. Conservation laws

During a fragmentation process conservation laws may
strictly limit the domain in which the SPD is nonzero.
Two important conservation laws are conservation of
measure and conservation of volume.

(i) If measure is conserved or C process we expect

P(f,,..

:Z“1W(f1,...,fm;rl,...,rm)ﬁ Zfa_IJ
a=1

B ) SRR

(6)
(ii) If the process is space filling or S process we expect

P(f,,..
=Z7'W(f,,...

Sl Tm)

> m;rl,.‘.
a=1

)8 | S rg——ll .

@)

The characteristics defined above all constrain the
form of an SPD. These characteristics are independent
except for A and B processes, which are mutually ex-
clusive. Therefore if we also allow as a separate charac-
teristic the negation of these categories, e.g., noncon-
served (NC) or nonhomogeneous, then it appears that we
have defined 25=32 mutually exclusive universality
classes. It should be noted, however, that for real frag-
mentation process, we may only have partial information
on some or several of these characteristics, e.g., we may
only know that the fragmentation process is conservative.
In this case, part of the experimental program would in-
volve discovery of further categories which help refine
the universality class to which the physical process be-
longs.

Thus the categories above can be combined to further
specify a multiplicative process. For example, conserva-
tive independent stochastic fragmentation (CIF) process-
es will result in an SPD of the form

P(fl,...,fm;rl,...

L =Z ] WS or ) [i fa—l\ C®
a=1 a=1

7rm)
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Similarly space filling independent fragmentation (SIF)
models will obey

P(f],...,fm;rl,...,rm)
=z! ﬁ W(f,7y)d i ri—1|.
a=1 a=1

One of the advantages about fragmentation which
obeys any type of IF process [this includes Egs. (5), (8),
and (9)] is that the complete characterization of the sto-
chastic process is given by the singularities of the proba-
bility P(f,r) or weight W(f,r) for a single measure
fraction/length scale ratio fragment. They can be used to
describe both AB and H processes depending on the
structure of these single fragmentation probabilities or
weights. Specifically for A processes P(f,r) or W(f,r) is
nonzero between r; <r=<r_.. and [ =f =S ma
while for B processes it is a smooth function in the com-
plete integration domain 0=<r=<1 and 0<f <1, and if
power law singularities exist, then these only occur at the
domain edges

f“ as f—0
(=" as f—1

r° asr—0

P(f,r),W(f,r)~ (10)

(1—=r)"" asr—1.

This assumption includes finite probabilities at the
domain edges as a special case. These probability scaling
exponents must obey u,v> —1 to allow for normaliza-
tion. For H processes, on the other hand,

P(f,r)=P(r)8(f —g(r),
W(f,r)=W(r)é(f —g(r)),

and therefore, for example, an HIF process will have an
SPD of the form

P(fy, ...

(1n

st )= I P(r)8(f,—8(r,)) .

a=1

’fm;rl"'

(12)

One of the most important aspects of all these classes
of models is that they are exactly renormalizable and the
partition function for any individual member of an en-
semble of stochastic processes can be explicitly calculated

N
Zy(gn= 3 pi/li=uta/15) 3 TIIF4r27]

{a}y [a]Ni=l

N m
(b1 T | 3 fz,.r;;] ,

i=1 |a;=1

(13)

and therefore so can the n replica average partition func-
tion

«zN<q,r>"»=<u:§m/13'>((ﬁ S s “”_]»

i=1 |a;=1

m nN
=<u:'g;,1/13f>( }_‘,f{',n?’]) : (14)
a=1

where {( )) represents an average over all members of the
stochastic ensemble, while { ) represents an average over
the SPD. Specifically for the annealed average

m N
(Zwa Y =W/ | 3 27|}, a9
a=1

while for the quenched average
{InZy(q,7) N =In(pul,, /13 )+N<1n S firy” ]) .
a=1

(16)

Now as N — o the only way the partition function can
be made to converge is if 7=17(q,n) such that

n

< S, forgen >=1. (1n

a=1

For the cases of annealed (n =1) randomness, Eq. (17)
simplifies to

m -7
( S o ? >=1, (18)
a=1

while in the quenched (n =0) case

(i

We can also define generalized dimensions by

7(q,n)=(q —1)D(g,n) , (20)

s er;TQ“”]>=0 : (19)
a=1

specifically annealed dimensions by 7,(q)=(q
—1)D,(q), and quenched dimensions by 74,(q)
=(q —1)Dy(q). These dimensions are generalized Haus-
dorff dimensions rather than box counting dimensions,
for in defining the partition function we are effectively
covering the set at each stage by a set of boxes of different
sizes / <maxl/, and choosing 7 uniquely such that the
partition function neither diverges nor tends to zero.

Equation (17) is the basic generating equation which
describes all members of this class of random weighted
curdling models. Obviously its solution will vary with
smooth variations of the SPD given by Eq. (3). In general
such variations are nonuniversal, and there is no reason
to believe that by using real data for the multifractal
spectrum the SPD can be recovered. Underlying this
trivial variation, however, deeper universal properties ex-
ist which can help us understand the physical properties
of stochastic multifractal systems such as DLA and tur-
bulence. We now proceed to investigate some of these
universal properties.

III. FRACTAL AND INFORMATION DIMENSIONS

In this section we examine the general behavior
to be expected for the Hausdorff dimensions D(n)
=D(g=0,n) and the information dimensions
D,(n)=D(q=1,n) as a function of the averaging pro-
cess.

Unless explicitly stated otherwise no specific assump-
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tions about any singularities in the SPD are made here.
Only for a homogeneous fractal processes with g (r)=r?
is the dependence on g and the averaging process trivial.
For this case

D(g,n)=D , (21)

independent of ¢ and the averaging process n. But this
simple behavior is far from the generic dependence on
these parameters to be expected for multifractals. Indeed
for nonconservative processes with 37, f, <1 the infor-
mation dimension does not even exist.

A. Hausdorff dimensions

As g —0 we see that Eq. (17) reduces to
< i rD(n)
a
a=1

For space filling processes the Hausdorff dimension is al-
ways the embedding dimension d. From an examination
of Eq. (22) and the property of any S process that
Sm_, rd=1, we immediately find the result

D(n)=d , (23)

n

>=1 . (22)

independent of the SPD and the replica average taken.
More generally for processes which are not space filling
Eq. (22) reduces in the annealed case to

<zr,’,’A>=1, 24)

a=1

while in the quenched case

(ln M er
a=1

What is clear from Eqgs. (23)-(25) is that, while for S pro-
cesses the Hausdorff dimension is independent of the
SPD and the averaging procedure, for processes confined
to a fractal support, or non-space-filling (NS) processes,
the measured Hausdorff dimensions will depend on the
replica average n taken. This fact alone serves to distin-
guish experimentally two important classes of stochastic
multifractal processes—S and NS—and would be a use-
ful method to apply to inertial turbulence where the di-
mension of the dissipative field support remains in ques-
tion.

>=O . (25)

B. Information dimensions

To find an expression for the information dimension
D,(n) we need to take the limit g —1 of Eq. (17). A finite
value for the information dimension only exists in the
case of a C process. For this case if Eq. (17) has a solu-
tion, then we see that 7(q,n)>0 for ¢ > 1, (g,n)=0 for
g =1, and 7(q,n) <0 for g <1, and therefore the limit ex-
ists with D;(n)>0. Indeed, for such a process the infor-
mation dimension is independent of the replica average
taken D;(n)=D,, with D; the solution of the implicit
equation (37, f,In[f,7, Pr 1) =0, which has the expli-
cit solution

D;={fInf)/{flnr) . (26)

This is a remarkable result because not only is the infor-
mation dimension independent of the replica average tak-
en, it is also independent of the multiplicity of the split-
ting and dependent only on the probability P(f,r) for a
single splitting event. This universality does not apply to
other generalized dimensions, which we study further in
Secs. VI-VIII.

For NC processes, however, the information dimension
does not exist, but rather 7(1,n) is finite and is given by

< (1,n)
Aln
(12 rar
a=1

Consequently for NC processes, the generalized dimen-
sion D (g,n) treated as a function of the complex variable
g has a simple pole on the real axis

D(g—1,n)=7(1,n)/(qg—1) . (28)

For example, for space filling but nonconservative homo-
geneous processes with f =r” we can calculate the gen-
eralized dimensions explicitly as D(q,n)=(gD —d)/
(¢ —1), independent of the replica average taken and the
pole at ¢ =1 is plainly visible.

Thus the existence of an information dimension serves
to distinguish between conservative and nonconservative
processes. Note that a combined use of the replica aver-
age dependence of the Hausdorff dimension with the
behavior of the generalized dimension near g =1 already
serves to separate four major universality classes
(CS,CNS,NCS,NCNS) for stochastic multiplicative pro-
cesses.

n

>=1 . 27

IV. STOCHASTIC MEASURE SINGULARITIES

The approach of characterizing multifractal measures
as interwoven sets [45,46] of singularities with exponent
a and associated fractal dimension f (a) is appropriate if
on covering a multifractal of length scale L by boxes of
size | the number of measure singularities of strength
w()~(1/L)* scale as N(a,)=p(a)l/L)"/®. This
description is valid for deterministic multifractals, but
has been applied mainly for characterizing stochastic sys-
tems. Yet it is clear that there is no such thing as a
unique a versus f (a) curve for any stochastic multifrac-
tal. Rather each member of the ensemble must have its
own unique distribution of singularities and any experi-
mental plot must represent some average over the ensem-
ble of such curves. Consequently the a versus f(a)
description must be generalized to take this stochasticity
into account.

To see how stochastic multiplicative distributions
should be described, consider first the deterministic
weighted curdling model in which at each stage of con-
struction a line of length [, is split in two equal parts and
the associated measure split into fractions f and (1—f)
on it. After N generations the length scale will
be reduced to Iy=I42"N and the measure will
consist of 2V fragments of which C} have measure
f"1—fY¥N"" In the appropriate limit (N — oo,n—> oo,
but x =n /N finite) scaling exists with dimension f(a)
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=—[xInx +(1—x)In(1—x)]/In2  for  singularities
a=—[xInf +(1—x)In(1—f)]/In2. Thus the a versus
f(a) description is obeyed, both a and f(a) being
parametrized by the single intensive variable x.

Now consider the case of a stochastic multiplicative
process in which again the length scale is reduced by a
factor of 2 at each generation, but this time with a proba-
bility p the measure splits into fractions f; and (1—f,),
while with a probability ¢ =(1—p) it splits into frag-
ments f, and (1—f,). We focus on a specific realization
of this stochastic process after N generations in which the
first possibility has occurred m times and the second
(N —m) times [let us call this the (m,N) realiza-
tion]. This event will occur with a probabil-
ity P(m,N)=CFp™g"~™. In the intensive limit
(N—o,m—o, but ¢ =m/N finite) this probability
scales as P(m,N)—P(c)~(ly/l,)'?, where g(c)
={cIn(c/p)+(1—c)n[(1—c)/q]} /In2.

A specific fragment in this (m,N) realization of the
multiplicative process is created by the measure frag-
menting n, times by a factor f,, and therefore (m —n,)
by a factor (1—f,), and n, times by a factor
f2, and therefore (N —m —n,) times by a factor
(1—f,). This singularity will have a measure
A=) =) " T~y /1) associat-
ed with it. This singularity occurs with a frequency
C,.'Cy,. For this stochastic case, scaling still
exists in the intensive limit [with n,,n,— o, but x,
=n,;/m and x,=n,/(N —m) finite], but now the di-
mension f(x,x,,¢)=—{c[x;lnx; +(1—x)In(1—x,)]
+(1—¢)[x,lnx, +(1—x,)In(1—x,)]} /In2  for  sin-
gularity a(x;,x,,¢c)=—{c[xInf, +(1—x)In(1—f )]
+(1—c)[x,Inf, +(1—x,)In(1—f,)]} /In2 depends on
the realization considered.

This analysis leads us to the following ansatz for the
distribution of singularities in stochastic multiplicative
processes. A stochastic multiplicative process will gen-
erate an ensemble of multifractals which in the scaling
limit can be described by a probability distribution

P(l,c)dc~p,(c)I/L)BEdc 29)

that a member of the ensemble when coarse grained to an
inner scale [ is described by a set of intensive order pa-
rameters c (in our case above ¢ described the fraction of
one set of splitting in a binary choice; a more complex
fragmentation process requires more complex intensive
descriptions).

If we define x to be a set of intensive descriptors of the
singularities that may be generated [in the case above
x=(x,,x,), the fraction of f, and f, splittings contribut-
ing to the singularity considered], then we may consider
a(x,c) to be the singularity exponent

w(x,c,l)~ (1 /L)*=% (30)

and f(x,c) the fractal dimension of this set related to the
number of such singularities between x and x+dx by

N(x,c,l)dx~p,(x,c)(I /L)~ /*®edx 31)

Thus to calculate replica averages

(<Z">>=<<

)

= [Pu.cre | [dxN(xe,Dutxe,br|". (2

> w1

Asymptotically (provided g71 and n+0) the inner in-
tegral has a maximum at x=x(q,c) and using the saddle
point method yields as (/ /L)—0

J dxN(x,¢,Dpu(x,¢,)I~(1/L) = Hacheltaalxigere]

When this expression is substituted into Eq. (32) and the
saddle point technique is applied again to the outer in-
tegral which maximizes at c=c,, and x(q,c=c,,)
=x, ,» a scaling form for the n replica average is found,

glc, )+n[—f(x, ,c  )+galx _,c . )]
(Z")~(/L) "om on’ gn on"gn

q’ n

and therefore
D(g,n)=g(c,,)/[n(qg—1)]
[ = f(xgn:Cqn)Hgalx,,,c,,)]/(g—1) .
(33)
For the case ¢ =1, Eq. (32) can be used directly to find
D(1,n)=D,;
=fP(l,c)dcfdxN(x,c,l)y(x,c,l)a(x,c)
=a(Xg=1n=15Cg=1,n=1) » (34)

which in agreement with the generating function for the
information dimension Eq. (26) is independent of n. The
quenched limit n —0 can also be found from Eq. (32)

(g —1)D(q,0)
= [P(L,c)dc[—f(x(g,c),c)+qalx(g,c),c)

=[_f(xq,n=070n =0)+qa(xq,n =0Cp =0)] . 35)

The expression given by Eq. (33) differs in important
respects from the expression derived originally by Halsey
et al. [46] which remains valid for deterministic mul-
tifractals. Specifically a real a versus f(a) curve dom-
inating all realizations of a stochastic multifractal does
not exist in general, as if it did then the replica averaged
partition function Eq. (32) would depend only trivially on
n and 7(g,n)=7(q)=—f(a,)+qa,. In the usual experi-
mental situation, the procedure carried out normally in-
volves calculating 7(q,n) and defining an effective a
versus f (a) curve by 7(q,n)=—f(a, ) +qa,,. Clearly
some type of averaged exponents are being found, but not
the distribution of singularities directly generated by the
stochastic multiplicative process, and this may hinder a
proper understanding of the underlying physics.

V. INEQUALITIES AND ASYMPTOTICS

Universal relationships can be derived between gen-
eralized dimensions in the case of deterministic multipli-
cative processes in the form of inequalities [38]. In addi-
tion their asymptotic forms tend to be simple. In the case
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of stochastic processes the replica averaged exponents
also have such universal behavior, their limiting form as
q— « and n — « depending on robust properties of the
SPD. Such inequalities and asymptotics can be expected
to have a greater universality than the exact values for
specific generalized dimensions (except for special results
such as the exact result for the information dimension
D;=1 for DLA in two dimensions).

A. Inequalities

If we have a set of random variables @; >0 and we
define a mean for these variables using the 7th moment as
m,(a)=(a")!’", where { ) represents an average over
some distribution, then Holder’s inequality states that
m,(a)>m_(a) if r>r', except in the special case
P(a)=06(a —a,) when all these means are the same
m,(a)=a,. An important consequence of Holder’s in-
equality is that if we have the equality m, (a)=m,(a’) for
all r > r’, then this can only be true if a; > a; for all i. We
make use of this corollary below.

Equation (17) in the case of conserved fragmentation
(C process) can be rewritten in the form

M _plmy_(fr=Pe™)]=1, (36)

where

’

m 1/(g—1)
mq~l(fr —D(q,n))= 2 fa(fara—D(q,n) )

a=1
whileM(q_l)n[a]z<a(q_1)n>l/[(q*l)n]'

First consider the case ¢g>gq’ at fixed n. We
apply the corollary to Holder’s inequality twice: first,
to the outer mean with the result m,_,(fr (a.nm)
>mq,_1(fr“D“”")), and then for a second time to the
inner mean with the result

D(q,n)=D(q',n) ifg>q’. (37)

This generalizes the known inequality D(q)=<D(q’) if
q > q' for deterministic fractals.

Now consider the case n > n' at fixed g. In this case it
will be useful to distinguish three regimes for g, namely,
g>1,qg=1, and g <1. Again using Holder’s inequality,
we find

D(q,n)=D(q,n’) ifn>n’, g<1,
D(1,n)=D(1,n’') if n>n', g=1, (38)
D(q,n)=D(q,n’) if n>n’', g>1.

For the case of nonconserved fragmentation (NC pro-
cess) where 3™_, f, <1, Eq. (17) can be rewritten in the
form

M" [ mq_l(fr—D(q,n))(q*l) =1, (39)

S fa
a=1

which simplifies in the case that the total fraction of mea-
sure between generations is a fixed amount
Srfoa=F<lto

M(q—nn[mq_,(fr_D“I'M)]:F—l/(q—1) ) (40)

We can see the singularity at ¢ =1, observed previously
in Eq. (28); but for g#1 the inequalitites found for con-
served fragmentation Eqgs. (37) and (38) still apply. If Fis
not fixed, but rather is a stochastic variable itself, then we
are not able to derive these inequalities.

To find the generalization of the concave inequality
7(q,+4q,)=[7(q,)+1(g,)]/2 valid for deterministic mul-
tifractals, we use the Schwartz inequality in the form

q,tq 2
E#il : Eﬂiz

i

n n

2n
< , (41)

29
Zﬂi :
1

which is valid for every individual member of a stochastic
ensemble, and therefore when averaged over the ensemble

[z )<
=

In Eq. (42) we have assumed that it is permissible to
neglect the correlations about their respective means of
the two sums

(] [z

[z

Provided this assumption is valid, we find the generalized
concave inequality

7(q,+4q,,2n) 2 [1(q,n)+7(g,,n)]/2 . (43)

2
E#iql

i

2q
E#i :
i

(42)

=

X

n

2q
2#1’ !
i
n

29
P g

i

29
2#1 g
i

Equation (43) reduces for quenched exponents to
(ql +q2 —1 )DQ(ql +q2)

B. Asymptotic forms

The inequalities derived above fix qualitatively the
shape of D(g,n) as a function of ¢ and n: for g <1,
D(q,n) is a monotonically increasing function of n; for
g =1, the generalized dimension is independent of n,
D(1,n)=Dy; for ¢g>1, D(q,n) is a monotonically de-
creasing function of n. While at any n, D(g,n) is a de-
creasing function of g. This still leaves open the ques-
tions of the limiting behavior as g — « for fixed n and as
n— oo for fixed q. To investigate these limits for A, B,
and H processes let us now rewrite Eq. (17) explicitly as

[ [P, ..

X[1df.I1dr, l i foroa-1D@n
a a a=1

P SN |
n

=1 (44

and consider the implications as g — o for fixed n.
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For type A processes, the main contribution to the in-
tegral comes from the corners of the 2m dimensional hy-
percube where f,=f .. and r,=r_ ... In this limit the
integral can be estimated as ~C[f . 7o2 %" 17" /(qn)?%,
where C is a nonuniversal constant dependent of the as-
sumed nonzero value for the probability on the domain
boundary. Using this estimate then yields the asymptotic
expression
lim D(q,n)—Inf,, /Inr;, +0O(In(gn)/(gn)) . (45)
g—x
Thus for A processes a finite nonzero limit D ( o0, n) exists
which depends only on the largest measure and smallest
length scale ratios into which fragmentation can occur.

For type B processes the g — o« exponents will be con-
trolled by the behavior of the probability distribution
near r =0 and f =1

lim D(q,n)—»(1+v0)/(qn)+0((qn)_(2+"‘)

q—

). (46)

For H processes Eq. (44) reduces to
fP(r,,. ceslm)
n

X[Idro |3 glry)ir @~ Pam | =1 @47)
a a=1

The nature of the asymptotic behavior is controlled by
both g(r) and P(ry,...,r, ). Suppose, for example, that
as for an A process the domain in which the probability
is nonzero lies between r;, <r,<rm.. and g(r) is a
monotonically increasing function of ». Then the most
important contribution to the integral lies at the domain
edge r,=r., and as g — « we find

lim D(g,n)=>Ing(r . )/Inr.. , (48)

q—

independent of the multiplicity and averaging process.
Let us now consider the asymptotic behavior as n — o
for fixed q. For type A processes we need to solve

m
S for 0@ | =1 (49)
a=1

max

In other words, we need to find the value of D (g, « ) such
that the maximum value of the left-hand side of Eq. (49)
over all of the domain where P(f,...,fp,ir1,.--»7p)
#0 yields a value of 1. Note that this value is universal
in the sense that it does not depend on the form of the
probability distribution where it is nonzero.

For g >1, the maximum lies at r;,; for g <1 the
maximum occurs at rg,.. In addition the sum
[(Zm f2]max=/SLax for g large enough; for ¢ <1 the
maximum occurs at f,=1/m for C processes and there-
fore [ 37,2 ]max="m "9 Putting these results together
yields the finite limits for the generalized dimensions
lim,_, ,D(g,n)—D(q, ) where

—lnm /Inr,, ifg<1

b fz] [lg=inrg,l, 60
a=1 max

if g>1

D(q,o)= {ln

which for ¢g>>1 can be estimated as [q/(q
—1D)]Inf a /Inr ;. Notice that as ry,,—1, D(q,n)—
o for g <1; as r;, —0,D(g,n)—0 for g > 1. It appears
therefore that there is nothing stopping a generalized di-
mension from having larger values than the embedding
dimension.

For B processes, these finite limits do not exist and we
rather have to estimate D (g,n — =) from Egs. (44) and
(10) directly. We find in this case

m(l—q)n/(l+vl)/[(1_q)n] if g <1

lim D(g,n)— {(14+v)/[(g—Dn]+0(n ") (51)
n— oo
ifg>1.
For H processes Eq. (49) reduces to
m
2 g(ra)qra—(q—l)D(q,w) =1. (52)
a=1

max
Thus D (g, oo ) is controlled solely by g () and given by

D(q,o)—[q/(q—1)]dIng[r(q)]/dInr(q), (53)

where r(q) is defined by the implicit equation
mg[r(q)]9r(q)~ 9 VP@=)=1_ Thus it is possible to dis-
tinguish between type A and B processes based on wheth-
er their asymptotic generalized dimensions tend to zero
or not as ¢g— o and their behavior as n— « for both
g<landg>1.

VI. INDEPENDENT STOCHASTIC FRAGMENTATION

In this section we shall assume that the m fold splitting
process at any given generation can be regarded as a set
of m independent events. In other words, we shall con-
sider the NCIF class of models given by the distribution
P(fy,... ) [18f . I ar.

a a

7fm;r1’---

=1 [P(farra)dfodry] . (58)
a=1

This universality class of fragmentation processes keeps
the physically plausible strong correlations to be expected
between the random variables (f,,7,), but loses the pos-
sibility of describing exactly physical processes involving
either strict measure conservation 37—, f,=1 or strict
space filling $7_,r¢=1. Both of these conservation
laws can, however, be incorporated into NCIF models on
the average by fixing the appropriate first moments
(f)=1/m in the case of measure conservation and by
(r?) =1/m for space filling processes.
We can write Eq. (17) for this class of processes as

n

=1, (55)

f ﬁ [P(fq,r)df 4dr,] i far mem
a=1

a=1

which for integral n can be expanded in the form
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S S [P aradf dr,)

a;=1 a,=1 a=1

‘11 ;ﬁq n) fq

”f‘q"’—l (56)

Let us use the notation n, to mean the number of sub-
scripts with a given 1 <a<m. Then we can rewrite Eq.
(56) as

! EREE
nan./[n,. [y

XTLAforgm e ) =1, (7
a=1

where ( )= [ [P(f,r)df dr. Finally using the identity

8, m=( 1/21T)f(2,”exp[i9(m —n)]d6 for the Kronecker

delta function, we find

(n!/21r)f027d6exp( —in0){g,(fr "@"expif))m=1,
(58)

where we have used the notation g,(t)=3}_ot/k!.
Thus for NCIF models one can reduce the generating
function to a form dependent on only the scaling proba-
bility distribution for a single independent splitting at any
generation. Equation (58) can also be rewritten as a
closed contour integral about the unit circle in the com-
plex plane by defining z =exp(i8) in which case we have

(n1/2m) §(dz/z' ") (g, (ForT@Mz))m=1.  (59)

For integer n there is an (n + 1)th-order pole at z =0,
and therefore using the calculus of residues and assuming
no other singularities in the unit circle Eq. (59) reduces to

d"(g,(fIr "eMz))m/dz"|,_o=1 . (60)
For annealed exponents Eq. (60) becomes
(for M y=1/m , (61)

and therefore the annealed Hausdorff dimension obeys
(r 4)=1/m in NCIF models, while in the g —1 limit
the information dimension is consistent with Eq. (26),
provided the NCIF process is conservative on the aver-
age.

Other simplifications occur as n— c when Eq. (60)
reduces to d"(expf% ~"%"z)™/dz"|,_,=1, while for
n =2, the generalized dimensions can be calculated from
the generating function m{(f9% ~"%2)?)+m(m
—1){f9 ™92 )2=1. Notice that all these forms display
the explicit dependence on multiplicity m of the mul-
tifractal spectrum in contrast with Eq. (17).

To derive the quenched exponents, however, we need
to consider analytic continuation of Eq. (55) as n —0. In
these investigations multifractal dispersion relations play
a significant role.

VII. QUENCHED AVERAGES
AND ANALYTIC CONTINUATION

From an experimental viewpoint, quenched exponents
are the least subject to poor statistics due to undersam-

pling the stochastic ensemble, and therefore the most ac-
curate in comparison with theoretical predictions.

To analyze the n —0 limit of NCIF models we need to
analytically continue Eq. (55), which can best be done us-
ing the Dirac delta function representation

n

[ 11 [P(farro)df adre]
a=1
= fowdx x"falrjl [P

m
Slx—3X fir,”
a=1

m
2 féry”
a=1

¥

(fa’ra )dfadra ]

(62)

The limits of the integral in Eq. (62) need only be taken
over positive x values as 37, f%r 7 >0 for all members
of the stochastic ensemble. On using the identity
8(x)=1/( 21'r)f + ~dk expikx, Eq. (62) can be rewritten

S dxxr f[[ [P(f ar7a)df 4dr,

m —_—
Zf?zrcf

=f_ [dk /(2m)1G (g,7,m; —K)h (k,n) . (63)

Here

h(k,n)= fowdx x "exp(ikx)

=explim(n +1)/2sgn(k)]n!/k|'*", (64

where sgn(k) means the sign of k, h (k,n) is the Fourier
transform of the generalized function |x|"[1+sgn(x)]/2
(see, for example, [60]), and G (g,7,m ;k) is the charac-
teristic function

G(q,7,m;k)=(explikfir "))™ , (65)

where as before ( )=f fP(f,r)df dr.

We note that if we analytically continue the charac-
teristic function into the complex plane, then the result-
ing function is analytic in the upper half complex plane
Imk >0. Therefore Titchmarsh’s theorem applies, and
we may write the dispersion relations

ReG(q,7,m;k')
=P(/m [ "dk ImG (g,m,m k) /(k —k')
(66)

ImG (g, 7,m;k")
-——P(l/ﬂ’)f dkReG(q,r,m k)/(k —k'),

where P means the prmcxpal part of the integral. These
dispersion relations can be used to generate several useful
identities including P(1/m) [t *dk ImG (q,7,m;k)/k
=1 and P(1/m)[*%dk ReG(q,7,m;k)/k =0. Other
useful properties of the characteristic function include
G(q,7,m;0)=1and G(q,7,m;—k)=G(q,7,m ;k)*.

The representation for the generating function given by
Eq. (63) is useful because the characteristic function
G (q,7,m ;k) does not depend on the replica average tak-
en and its multiplicity m dependence is very simple, while
the n dependence in h(k,n) is valid for nonintegral n.
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Also note that in Eq. (63) it is G (¢,7,m ; — k) that appears inside the integral and not G (g, ,m ; k).
Because of the singularity in & (k,n)~ |k|!*" as k—0, Eq. (63) is an improper integral for n >0 and to analytically
continue into this domain we integrate by parts with the result that for n > —1 we find

f_*”[dk/(zfr)]c;(q,r,m;—k)h(k,n)=[r(n)/n]fo“(dk/k"xd/dk)uma(q,T,m;k)cos(m/z)

It is now possible to take the n —0 limit, with the final
result that Eq. (55) reduces to the implicit equation for
the quenched multifractal spectrum 74(q),

fo‘”dk Ink [d ReG(q,74(q),m ;k)/dk
—(2/m)ImG(g,7p(q),m;k)/k]=2C ,  (68)

where C =0.57721566. .. is the Euler-Masheroni con-
stant. In deriving Eq. (68), use was made of the identity

fomdk Inkd ImG(q,74(q),m;k)/dk =—m/2 ,

which can be derived from the multifractal dispersion re-
lations.

VIII. PHASE TRANSITIONS
AND MINIMAL PROBABILITIES

For a multifractal with no phase transitions the com-
plete spectrum of D(g,n) exists between — o0 <g < .
But in many cases the structure of the SPD will result in
the existence of phase transitions, which imply that
D(g,n) is only defined for QGuouom(”)<g <gyop(n).
Among the most robust and universal properties of sto-
chastic multifractal spectra are the position and nature of
singularities at these phase transitions. They appear to
be dependent only on the nature of singularities in the
SPD and on the replica average taken. This observation
implies that a great deal of useful information on the
multiplicative random process controlling stochastic mul-
tifractals can be extracted from studies of gy om(7) and
Gop(n), the positions where multifractal phase transitions
occur as functions of the replica average n used, and the
nature of any singularities in D (g,n) close to these points.

Let us first consider a type A process. Because the re-
gion of (f,r) integration is bounded for such a process, all
the moments in Eq. (69) exist for all finite g. As a conse-
quence, type A processes have a complete multifractal
spectrum with no phase transition whatever the shape of
the SPD (naturally assuming that no singularities exist in
the bounded integration domain).

This situation changes drastically for type B processes.
Starting with Eq. (17) in the expanded form

pORNCIVETIRRET TN | U240 | Bl ES
a=1 a=1

nyccng,

(69)

where the sum is over terms obeying 3, n,=n, we note
that the different moments contributing to the sum above
are more or less singular depending on g and the moment
considered. The fact that a breakdown in scaling can be
expected in Eq. (69) can be seen by considering the effect

—ReG (g, 7,m ;k)sin(mn /2)} . (67)

-
of measure singularities as f—0. For ¢ >0 the most
singular behavior occurs for moments with n,=0, and as
P(f,r)~f #o we note that all the moments exist provided
o> —1. For g <0, however, the most singular behavior
occurs for moments with n,=n; in this case all the mo-
ments only exist provided

q>qb°“om(n)=—(y,0+l)/n . (70)
Specifically gpoiiom, 4 = —(io+1) for annealed averages,
while gpoom, g = — ® for quenched averages.

Indeed divergent behavior in D(q,n) can be expected
as ¢ —QGpoom (1) for B processes and the generalized di-
mension is increasingly influenced by the set of very weak
measure fragments at f —0 and r —1. We find

—1/(v]+l)/[(q_1)n] 71)

as ¢ —Gporom (M) = —(po+1)/n. This singular behavior
is universal, depending as it does only on g, n, and the
singularities in the SPD associated with the weakest frag-
ments.

To analyze q,,,(n) we note that for ¢>1 the most
divergent integral occurs with n,=n. As f and r are
bounded from above, however, and D (g,n) can always be
chosen so that there are no divergences in the moments
as r —0 provided v,> —1 and n > 0 we find

D(g,n)~—(up+gn +1)

Grop(n)=o0 . (72)

These expressions are independent of the splitting mul-
tiplicity m and this is confirmed by an examination of the
exact results for the NCIF model for which we need only
examine the conditions for the existence of the average
(8.(f9% " "z)) in Eq. (59), which again is independent of
m.

The results above are only valid for py>—1 and
vo> — 1. In this regime the central limit theorem holds,
in consequence of which the random variables
(1/N)n[p,/t1a] and 1/N1n[l,/1,] have lognormal
distributions. For py<—1 and vo< —1, on the other
hand, the distributions cannot be normalized. This still
leaves open the behavior of an important class of distri-
butions of the form

Py f,n~1/[flInfM],

N (73)

Py(f,r)~1/[r|lnr|?]
as f—0 and r—0, respectively. For these distributions
to be normalizable we require that the measure exponent
A;>1 and the same for the length scale exponent A,> 1.
An examination of the second moments {(Inf)?) and
((In7)*) shows that for A, >3 and A, > 3 the central limit
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still applies, but for smaller values a breakdown of log
normality can be expected. For this distribution a mul-
tifractal phase transition can be expected at

qbottom(n)=0 if Ho™= -1,

(74)

Giop(n)=1 if vo=—1

for all n >0, and therefore an upper critical value for ¢
exists in this case.

For quenched exponents n =0 more care needs to be
taken, and this can be done by exammmg the conditions
for the existence of (In[3m™, f @ 1), Three ranges
emerge: (a) for g > 1, this average exists provided A;>1
and A,>2; (b) for 0<g <1, the average exists for all
values of A, >1 and A, > 1; (c) for ¢ <0, the average exists
provided A, >2 and A,>1. These results imply that for
quenched exponents the bottom end of the multifractal
spectrum obeys

—o if ug>—1 oruyp=—1, A;=2
qbottom,Q= 0 if[l«():—l }\'252 (75)
while the top end obeys
o ifvyg>—1 orvg=—1, A,22
Top.0 ™ |1 if vy=—1, A,<2. 76)

For H processes an examination of Eq. (47) shows that
Guottom (1) is controlled by the behavior of g (7). If a finite
Fmin €Xists, then no multifractal phase transitions will
occur. If, however, g (7) is singular as » —0, then a finite

dbottom(n) may be expected. For example, if
g(r)~exp(—pBr~7) has a stretched exponential form,
Qvottom (1) =0 independent of the averaging process.

For such stretched exponential forms for g(r) as
q—>0+, D(g,n)—D(n), the finite ensemble averaged
fractal dimension obeying

[P(r,,...

For small g, near the multifractal phase transition, singu-
larities of the form D (g,n)=~D (n)+¢*" f(n) may occur
in the generalized dimension depending on the nature of
the averaging process and the stretched exponential ex-
ponent y. Indeed, this appears to be the case. We find

- )Hdr =1. (77

1 if y<D(n)+1

[D(n)+1]/y if y>D(n)+1. (78)

AMn)= [
Closely connected to the existence of multifractal
phase transitions is the scaling behavior of the minimal
measure fragments p,; (N) with the number of frag-
ments N. Consider a single realization of a fragmenta-
tion process of multiplicity m, which has occurred N
times. The total number of fragments is N=m®". What
is the minimal measure that is likely to be observed? This
meagure can be estimated as

l"min(‘N) ~y’totalfmin(‘N)N ’ (79)

where f;,(N) is the minimal measure fraction likely to

occur during N multiplicative events and p,,, here
represents the initial total measure.

For A processes f_.. is simply the lower edge of the
measure domain of integration and therefore the minimal
measure decreases as a power law in the number of frag-
ments

—lnf ;. |/Inm

lu’min(‘/v) (80)

For B processes, we can estimate f_. (N)
from the equation J\/[f mingf P(f)]~1, where P(f)
= [ 4dr P(f,r). Thus the scaling behavior of the SPD as
f—0 will control the mxmma] observed fragment and we
find fpin(N)~N ' for o> —1. Combining this

estimate with Eq. (79) yields a log normal (in the number
of fragments) form for the minimal measure

Eaninl M) ~ tora€xp{ —(INA)? /[ (o+ Dinm 1} . (81)

If the central limit theorem breaks down and the SPD
has the form given by Eq. (73), then we find that

~ .u‘tolal‘/v

S min(N)~exp[ —cN ]. The minimal measure for
this case has a stretched exponential form
PenintN) ~ Ly orai€Xpl —cN' /(A‘—”ln./\//lnm] , (82)
where c is some constant.
Finally, for H  processes [ min Vg f P(f)

= f;"“"dr P(r), where f ;. (N)=g (r;,) and therefore in
this case the minimal fraction behavior depends on the
short length scale behavior of g(r). If we assume the
stretched exponential form g(r)~exp—pBr~ 7, we find
that f i, (N)~(InA)7 V77 /N, and therefore once more
we find a scaling form for the minimal measure which is
very close to log normal in the number of fragments

(y+1)/y J(InA)*InInAN/Inm } .
(83)

.umin(‘/v)Nlu'totalexp{ -

In summary, the existence of multifractal phase transi-
tions is associated with minimal measure fragments
which tend to zero faster than any power law in the num-
ber of fragments; the breakdown in log normal behavior
and the central limit theorem for the random measures
are associated with stretched exponential forms for the
minimal measures.

IX. BINARY CONSERVED FRAGMENTATION

In this section we study conserved CIF, especially
binary conserved fragmentation. This is perhaps the
physically most important of stochastic multiplicative
processes for it has been be used to describe both inertial
turbulence and, as we shall explicitly demonstrate, DLA.
The ansatz for the SPD is taken to be

P(fise sSmilis-v-slm)
=71 H W(fqry)d

a=1

zfa—1] (84)

where the partition function Z is given by
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z=s élfa—l

1 (W (Fra)dfadry] . (85)
a=1

The first thing to notice about Eq. (84) is that the
equalities involving the generating functions for a CIF
process can be explicitly written down by a simple trans-
formation of those for NCIF models by using the
integral representation of the Dirac delta function
8(x)=(1/2m) f i:exp(ikx)dk to replace any noncon-
served fragmentation average of the form (X)™
=[[ [P(f,nX(f,r)df dr]™, where m is the splitting
multiplicity, by the expression

z=\1/2m) [ " dk exp(—ik)
X [ffW(f,r)exp[ikf]X(f,r)dfdr]m .

(In fact the same procedure can be applied to SIF pro-
cesses where

Zz71/2m) [ " dk exp(—ik)
X [ [ [ wif,rexplikré1x f,r)dfdr]m

is the proper transformation of the nonconserved aver-
age.)

For many physical processes binary fragmentation
m =2 is either an exact (we consider binary DLA in Sec.
X) or a reasonable approximation (Meneveau and
Sreenivasan [59] have argued that a binomial cascade
model suffices to account for the multifractal spectrum of
inertial turbulence). Also this binary cascade model max-
imizes correlations between the appearance of small and
large measure fractions and therefore any singularities in
these limits have an enhanced effect on the spectral
behavior.

For conserved binary fragmentation Eq. (17) can be
rewritten as

z7 [ df [dr, [dr,W(f,r)W(—f,ry)
x[fqu—(q—l)D(q,n)+(1_f)qr2—(q—1)/D(q,n)]n=1 ,
(86)

where Z = [df W(f)W(1—f) and W(f)= [dr W(f,r).
As a consequence, the probability density P(f,r) of
finding an individual fragmentation piece of measure
fraction f and length scale ratio r is given by

P(fir)=Z 'W(f,n\W(1—f), (87

and therefore the probability P(f) of finding a measure
fragment f whatever its length scale is

P(AH=Z "W Hwa-o, (88)

which is a symmetric function about f =1. Similarly the
probability P(r) of observing a fragment of any given
length scale r independent of its associated measure is

P(n=[df P(fin=Z7' [df W(f,nW(1—f). (89

In contrast to Eq. (88), P(r) will exhibit no special sym-
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metry properties in general.

If the binary CIF process has an A form for the weight
W (f,r), no singular behavior will occur in P(f,r) or
P(f). Scaling may appear in these reduced probability
distributions if singularities in the weights W (f,r) exist.
For B processes, the weights will be dominated by singu-
larities at the boundary of the (f,r) domain. As a conse-
quence one would expect singular behavior in P(f,r) of
the form

f* as f—0
(1—f)¥ as f—1,

where u=p,+u, [see Eq. (10)]. This symmetric but
more singular behavior is a manifestation of the maximal
correlation between the appearance of small and large
fragments in binary conserved processes. Similarly the
exponent p also replaces p, in Eq. (70) for the position of
multifractal phase transitions.

A second alternative is that no power law singularities
appear in the weight W(f,r) at the domain edge, but
rather we are dealing with an H process. For this case
W(f,r)=W(r)d(f —g(r)) [see Eq. (11)]. One conse-
quence of the scaling ansatz g (r)=r? is that P(r), while
not a symmetric function of r about r =1, does obey the
form

P(r)=W(r)W({(1—rP)V/P)(1—,D2)1=D/D (91)

and therefore the function P (r)(1—r2)? ~1/D should be
a symmetric function of 2 about r?= 3. Also the weight
W (f) for such scaling H processes obeys

W(f)=w(f1/P) =010 92)

P(f,r)~ (90)

The reduced weight W(r) may also show scaling
behavior W(r)~r" as r—0, while W(r)~(1—r)" as
r—1, in which case then we shall call such scaling
behavior a corner singularity as it implies a singular
behavior in the SPD at the corners (r =0, f =0or r =1,
f=1) of its domain. In conclusion, depending on the
dominant process involved we may expect different types
of scaling for P(f)

Hotp
f° " for B processes
f(v+Dv’+1—D)/D

P(f)~ 93)

for scaling H processes

and such scaling is indeed observed in DLA.

X. MASS AND GROWTH
DISTRIBUTIONS FOR DLA

As a physical example of the use of SPDs for charac-
terizing stochastic multifractals we shall consider
diffusion-limited aggregation. DLA can be characterized
as a C fragmentation process. We associate a measure
Mpranch Of interest with branches of the DLA cluster. For
example, here we consider the mass measure (or number
of particles) in branches and as a second example the
probability that random walks stick to a given branch.
As each branch consists of a node and m subbranches,
and both mass and growth probability are conser-
vative, we can split the measures into fractions
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S a =/“'subbranch,a/ Horanch» Where Hsubbranch,a is the measure
associated with each subbranch a. We can also associate

a length scale Iy, with each branch, for example, its
radius of gyration or the maximal diameter of the set of
particles in a branch. The ratio of length scales between
a branch of length scale [, ,,, and its subbranches
Isubbranch,a defines the set of ratios r a=— ) subbranch,a / lbranch‘

Because the choice of length scale is not unique, the
SPD is to some degree dependent of the choice made.
For example, if the maximal diameter is chosen as the
length scale Iy,..,,» then =<1, but if both particles
defining this diameter lie in a single subbranch, then r =1
for this fragment and therefore we might expect sharp
singularity to exist on the boundary P(f,r =1). On the
other hand, if the radius of gyration is chosen as the
length scale, then r > 1 is possible (consider a branch con-
sisting of two subbranches, one of which is essentially
linear and one which is almost compact—the linear frag-
ment can be expected to have r > 1). In this section, we
shall therefore use the radius of gyration as our length
scale and concentrate on the scaling behavior of frag-
ments with r < 1.

Thus both the mass and growth probability measure
can be characterized in terms of conservative stochastic
multiplicative processes with a multiplicity ratio m
dependent on the specific model simulated. For example,
simulations on d dimensional hypercubic lattices would
give m =2d — 1, while off lattice two dimensional DLA
implies m =4 (any particle can be connected to a max-
imum of five other particles, one of which must be its
parent). We shall define and study here two dimensional
binary DLA.

Binary DLA is defined as normal DLA with the addi-
tional constraint that each node can have at most two
subbranches—if a random walk reaches first a site neigh-
boring a particle which already has two subbranches, it
cannot stick there but must continue its walk until it
reaches a site neighboring a particle with fewer descen-
dants. As a consequence, binary DLA has a perfect
binary tree topology with m =2. Recursive algorithms
can be used to analyze its SPD for both mass and growth
measure and the fragments at each generation identified.
In Fig. 1 we have plotted both a typical binary DLA clus-
ter and its associated fragments at different generations.
The cluster itself is shown in Fig. 1(a); in Fig. 1(b) circles
of radius of gyration covering the fragments with r <1
are plotted. The early generation fragments are coded a
lighter shade of grey than the later ones for purposes of
visualization. Binary DLA is a fractal in the same
universality class as normal DLA (in fact its fractal di-
mension appears to be even closer to D =3 than normal
DLA), but its multifractal properties can be analyzed
more simply because of its binary tree topology.

One of the basic assumptions of this paper is that many
physical stochastic multifractals are Markovian in con-
struction and therefore have an SPD that is independent
of generation. In Fig. 2 we plot the function InP _,(f,7)
for clusters of 5000 and 10000 particles using the mass
measure. The abscissa corresponds to the length scale ra-
tio r and the ordinate corresponds to the measure frac-
tion f. The darker the grey level, the larger the magni-

(a)

(b)

FIG. 1. (a) A typical binary DLA cluster. Like the normal
DLA it is a fractal with D z%, but in contrast to normal DLA
it has an exact binary tree structure. (b) Circles of radius of
gyration r < 1 covering the mass measure fragments at each gen-
eration. The later generations are coded a darker gray for pur-
poses of visualization.

tude of P, (f,7) on a logarithmic scale. The white cir-
cles correspond to the curve f =r°/3. An examination of
all our data shows that while 1000 particle cluster data
are fairly noisy, the data for larger clusters such as the
5000 and 10000 particle data shown in Fig. 2 settle down
to a universal form independent of cluster size and con-
sistent with the assumption of a Markov process. This
SPD, while peaked approximately around f =r>"® and
diverging in magnitude near (r =0, f=0 and r=1,
f =1), consistent with the dynamics being a H process
with corner singularities of the type described in Sec. IX,
nevertheless shows clear deviations from the limiting
form. These deviations are describable in terms of B dis-
tributions: (i) a band of small but definitely nonzero
probability exists at small r for all f; in other words, the
dynamics of DLA fragmentation not only creates self-
similar branches of various sizes but also a distribution of
strong singularity “hot spots”—compact clusters con-
taining much greater measure than appropriate for a
homogeneous fractal with D =3; (ii) a weaker but still
clear band of fragments with large r but small f can be
seen; these are weak singularity “cold spots,” very open
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(a)

(b)

r

FIG. 2. InP,,.(f,r) for clusters of (a) 5000 particles and (b)
10000 particles, showing the Markovian dynamics of DLA.
The abscissa corresponds to the length scale ratio r while the or-
dinate corresponds to the measure fraction f. The gray level is
linear in InP(f,r). The white circles correspond to the curve
f=r

dendritic branches of large relative radius but containing
only a few particles; (iii) close to the region r =1, f=1a
tendril-like structure is appearing in the SPD which ap-
pears not be an artifact of the data. Its origin at present
is not known.

These are all qualitative results for the mass measure
SPD. To study mass measure scaling in greater detail we
plot the probability P, (f) of splitting into a mass frac-
tion f in Fig. 3(a). In line with Eq. (88) this should be a
symmetric function about f =1; indeed a reasonable fit
to the complete curve [see Fig. 3(b)] is given by the sym-
metric function P, (f)=~ A[f(1—f)]"!3, though this
form must break down close to f—0 and f— 1 from the
constraint of normalization. To study this asymptotic re-
gion more closely we have plotted InP_ . (f) versus Inf
as f—0 in Fig. 4. A least-squares fit to the data yields
InP(f)~ —8.64-0.88Inf. Though our data are not real-
ly good enough to be certain on this point, it does appear
that for the mass measure u=~ —0.88 and certainly
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FIG. 3. The reduced SPD P, (f) showing the symmetry
about f=1. (a) A plot of InP,,(f) versus f; (b) a plot of
InP . (f) versus Inf(1—f). The straight line fit suggests that
P (f)= A[f(1—f)]?/* reasonably parametrizes the mass

fraction distribution except at the limits f—0 and f—1.
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FIG. 4. The asymptotic scaling of P, (f) for the mass mea-
sure as f —0. A least-squares fit yields u~ —0.88.
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p> —1. Thus the dynamics favors the creation of large
and small mass fragments at the expense of similar sized
fragments, but the central limit theorem is still obeyed by
the mass measure of two dimensional binary DLA. Con-
sequently no phase transitions will be observed in the
mass multifractal spectrum for quenched exponents [see
Eq. (70)]. For annealed exponents a phase transition
should exist at gy om = —(+1)= —0.12, but this may
be very difficult to observe in numerical simulations be-
cause of the poor statistics for annealed averaging.

The mass measure is not the only measure that can be
used to study DLA. Even more closely related to the dy-
namics is the growth measure associated with any given
branch, which can be found by studying where random
walks stick on the cluster. From this measure the growth
SPD can be calculated and its logarithm InP ., (f,7) is
plotted in Fig. 5 for both 5000 and 10000 particle clus-
ters with the grey level increasing with probability on a
logarithmic scale. The Markovian nature of the process
can be seen from the approximate invariance of the SPD
with cluster size (there are still finite size effects observ-

(a)

(b)

FIG. 5. InP o0 (f,r) for clusters of (a) 5000 particles and (b)
10000 particles, showing the Markovian dynamics of DLA.
The abscissa corresponds to the length scale ratio » while the or-
dinate corresponds to the measure fraction f. The gray level is
linear in InPg oy (f,7).

able, but it does appear to be settling down to a limiting
distribution). The most obvious difference between Figs.
5 and 2 is that, whereas the mass SPD InP . (f,r) ap-
pears to be approximately homogeneous with f=~r>"3,
the maximum value of InP ., (f,7) as a function of r is
approximately shaped like a reflected Z with divergences
as Pyrown(f —0,7 <3) and Pyoyn(f —1,7> 7). There-
fore one branch will always tend to dominate the growth
process. This result together with the singularity in the
mass SPD at r=0, f=0 and r=1, f=1 suggests a
“winner take all” dynamical mechanism, supporting the
ideas of Halsey and Leibig [61] of competitive branch
growth in DLA.

To study the growth SPD more quantitatively we have
plotted in Fig. 6(a) InPg,;(f). As expected this is a
symmetric function about f =1, which can be fitted very
well by the form P(f)=~ A[f(1—f)]"! over the entire
range of growth fractions. This form does indeed suggest

-5.0 ]
(a) . .
. .
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L] -
a - L
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(b) | In P(f) =

- 8.9195 - 0.98157In[(1-1)] |

6:0 -5.0 -4.0 -3.0
In[t(1-1)]

FIG. 6. The logarithm of the reduced SPD InP . (f) plot-
ted against (a) f and (b) In[ £ (1— f)], showing the breakdown in
the central limit theorem for growth. Py qm(f) is a symmetric
function about f=1, which can be fitted by the form
P(f)= A[f(1—f)]! over the entire range of f, Multifractal
phase transitions will be observed at gyoom(7)=0 for all replica
averages.
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that for the growth measure = —1 and the central limit
theorem breaks down. Therefore multifractal phase tran-
sitions will be observed at gyqom,(7)=0 for all replica
averages [see Eq. (74)] of the growth probability including
quenched exponents Guoom, o =0 [see Eq. (75)] in line
with the numerical simulations of Schwarzer et al. [54]
and Trunfio and Alstrém [53] for quenched exponents.
These results are also in agreement with Mandelbrot and
Evertz [62,63], who have suggested gyotom, o =0- The re-
sults of Lee and Stanley [51], who found gyo4om, 4 = — 1.0
for annealed exponents would imply =0 and this result
would in turn imply Gyoom,@=~ — . Which set of re-
sults is correct depends on a delicate interpretation of the
PSD for very low growth fractions [see Fig. 6(b)]: does
the SPD continue to diverge as P(f)~1/f apart from
logarithmic corrections as f —0 or does it cross over to
some less singular behavior, specifically does
Pyrowin(f =0) exist? Note that simulations of the
minimal growth probability in DLA by Schwarzer et al.
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FIG. 7. The reduced SPD P(r) showing the asymmetry
about 7 =%, but suggestive of a scaling H process. (a) InP(7)
plotted against length scale 7 for both the growth and mass mea-
sures [P(r) should be independent of the measure chosen]. (b)
Replotted for the mass measure as In[ P, (r)(1—r2)P~1)/D]
against 77, the reflection symmetry about r”=1 substantially
increases.

[54] find a log normal (in the number of particles) decay
in the minimal probability of the form given by Eq. (81),
which suggests that the growth probabilities obey the
central limit theorem and therefore p> —1. It is of
course possible that normal and binary DLA have
different singularities, but all previous analyses would
suggest that any dependence on branching m is very
weak and, in addition, normal DLA tends asymptotically
to have an effective binary tree topology [61]. Therefore
we think that more accurate numerical studies of binary
DLA should settle this question.

The function P(r) from its definition should be in-
dependent of the nature of the measure considered.
Therefore in Fig. 7(a) we have overlayed the distribution
P(r) found for the growth measure over that for the mass
measure. The agreement is reasonable and can be used to
judge the noise fluctuations in our data. The dependence
of P(r) on length scale ratio r is not symmetric about
r=4, but when replotted in Fig. 7(b) as sug-
gested in Eq. (91) for scaling H processes—plot
P(r)(1—rP)P=1/D a5ainst rP—the reflection symmetry
about r? =1 substantially increases. This symmetry is
not exact because, as pointed out above, ‘“hot” and
“cold” fragments break this homogeneity. Nevertheless
the approximate agreement observed confirms that DLA
can be described to a good approximation as an H pro-
cess.

The behavior of P(r) for small r can be used to exam-
ine the question about whether an upper limit g,,,(n) to
the multifractal spectrum exists. The data for P(r) from
both the mass [P,,(7)] and growth [Py oy, (7)] simula-
tions are plotted in Fig. 8. Is there a breakdown in the
central limit theorem as far as the fragments ratios in
DLA are concerned? The best straight line fit through all
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- 7.9505 - 1.0048 In r
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-8.0

-6.0 -5.0 -4.0

. FIG. 8. InP(r) plotted against length scale Inr for both the
mass and growth measure data showing a breakdown of the cen-
tral limit theorem for length scale ratio distributions in DLA.
The best straight line fit P(r)~r ! suggests the existence of an
upper phase transition at g,q,(n)=1.
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the data would suggest v=—1, and this would imply that
a phase transition should be observed in the multifractal
spectrum at q,,,(n)=1 [see Eq. (74)]. But this conclusion
is also very delicate and it is also possible to see a cross-
over to a less singular limit in Fig. 8 provided the very
smallest fragments are neglected. In this case
Grop(n)=o0.

XI. DISCUSSION

In this paper we have examined the characterization of
stochastic multifractals by scaling probability distribu-
tions describing their creation by hierarchical Markovian
random multiplicative processes. We have found that
such a characterization is not only rich enough to encom-
pass such multifractals as DLA, but it is much more in-
formative about both structure and dynamics than any
multifractal spectral representation whose simple
behavior, constrained by the inequality relationships of
Sec. V, washes out most interesting dynamical informa-
tion except near phase transitions.

We have tried to emphasize in this paper universal
classes of multiplicative stochastic fragmentation pro-
cesses based on general properties of the SPD, especially
its global singularities, independence or strong correla-
tions in the SPD, and whether the process has conserva-
tion laws associated with it such as conservation of mea-
sure or volume.

That singularities appear in the SPD for real physical
processes is apparent from both the mass and growth
measures of DLA. Strong relationships exist between
such SPD exponents and the averaging used to calculate
generalized dimensions, on the one hand, and the depen-
dence of both the positions g om(7),g,0p(n) and the
singularities in the D(g,n) at such multifractal phase
transitions. These relationships can be used to distin-
guish lognormal distributions (such as may be expected
for the mass fractions in DLA) from those which disobey
the central limit theorem (such as the growth measure
fractions). Thus, though it is unlikely that the SPD can
be recovered by inverting multifractal spectral data and
the SPD is best measured directly as we have done here
for DLA, it does appear that robust properties of the
multifractal spectrum can be used to extract universal
characteristics of the SPD describing the fragmentation
dynamics.

The influence of the averaging used is crucial in the
study of stochastic multifractals. The averaging process
has a significant but well ordered effect on spectra as de-
scribed by the inequalities derived in Sec. V. For conser-
vative processes three qualitatively different types order-
ing appear: D(q,n)=D(q,n’) if n>n’' and g<1I;
D(1,n)=D(1,n’) if n>n’ and g¢=1;, and D(q,n)
<D(q,n’) if n>n' and ¢ > 1. In addition, the positions
and singularities of multifractal phase transitions are
strongly, but in a universal manner, influenced by the na-
ture of averaging.

Universal limits seem to exist for the generalized di-
mensions D (g,n) asymptotically as ¢— o and n— .

Specifically whether the generalized dimension remains
finite or the way D (q,n)—0 depends on the behavior of
the SPD at the edges of its domain of integration, while
the manner in which it approaches zero depends on the
averaging.

The influence of conservation laws is also significant.
Measure conservation ¥ ,f,=1 such as that which
occurs in DLA and in the inertial regime of turbulence is
especially strong for the information dimension Dy,
which uniquely is independent of replica averaging for
conservative processes and does not exist for nonconser-
vative ones. For space filling process 3,7%=1, both
conservative and nonconservative processes appear to
have a weaker dependence on the averaging process in-
volved than for processes with a fractal support.

The influence of the multiplicity of splittings m at each
fragmentation generation is weak on the resulting mul-
tifractal distribution. The dependence is often logarith-
mic, and for a large class of models the position of the
multifractal phase transitions is independent of m.

We also note that the usual a versus f(a) and D,
versus g formalisms are inadequate to describe stochastic
multifractals. The spectrum depends in reality on the
averaging process D (q)— D (g,n), while the idea of in-
tertwined sets of measure singularities leading to the
f(a) versus a description must be generalized to an en-
semble of multifractals, each with its own distribution of
singularities [an additional exponent g (c) is therefore re-
quired, describing the probability that a member of the
ensemble in question is described by a set of intensive or-
der parameters ¢ describing the stochasticity in the frag-
mentation process].

The differences between fragmentation processes where
only finite-sized length scale ratios or measure fractions
can occur (A processes) and those where singular distri-
butions for very small or large fragments (B processes)
exist are profound. A processes have a complete mul-
tifractal spectrum with no phase transition whatever the
shape of the SPD. This situation changes drastically for
type B processes for which the singularities in the mea-
sure result in multifractal phase transitions. For exam-

ple, if P(f,r)~f#° as f—0, then we may expect a mul-

tifractal phase transition at g om(7)= —(ue+1)/n, and
this phase transition depends strongly on the averaging
process.

There also exist strong correlations between the
minimal fragment sizes (minimal growth probabilities in
DLA, weakest vortices in turbulent flows) and the singu-
larities of the SPD. The behavior of minimal size frag-
ments is also closely connected to the existence of mul-
tifractal phase transitions. The minimal measure typical-
ly scales as a power law in the number of fragments in the
case of complete spectra and log normally in the number
of fragments for distributions obeying the central limit
theorem, but has a stretched exponential form for distri-
butions where breakdown occurs.

It would be of great interest to apply these results fur-
ther both to the study of DLA and especially to inertial
turbulence, where a direct extraction of P(f,r) for the
dissipation field encodes the manner in which energy is
transported from large to small scales.



|3

STOCHASTIC MULTIFRACTALITY AND UNIVERSAL SCALING . .. 261

ACKNOWLEDGMENT

I would like to thank Professor Fereydoon Family for useful discussions.

[1] See P. Meakin, in Phase Transitions and Critical Phenome-
na, edited by C. Domb and J. L. Lebowitz (Academic, Or-
lando, 1988).

[2) T. Vicsek, Fractal Growth Phenomena (World Scientific,
Singapore, 1989).

[3] D. Stauffer, Introduction to Percolation Theory (Taylor and
Francis, London, 1985).

[4] H. J. Herrmann, Phys. Rep. 136, 153 (1986).

[5] See A. Bunde and S. Havlin, in Fractals and Disordered
Systems, edited by A. Bunde and S. Havlin (Springer-
Verlag, Berlin, 1991).

[6] A. N. Kolmogorov, C. R. (Dokl.) Acad. Sci. URSS 30, 301
(1941); 30, 538 (1941).

[7] G. K. Batchelor, The Theory of Homogeneous Turbulence
(Cambridge University Press, Cambridge, 1953).

[8] B. B. Mandelbrot, J. Fluid Mech. 62, 331 (1974).

[9] R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, J. Phys.
A 17, 3521 (1984).

[10] C. Meneveau and K. R. Sreenivasan, J. Fluid Mech. 224,
429 (1991).

[11] T. A. Witten, Jr. and L. M. Sander, Phys. Rev. Lett. 47,
1400 (1981).

[12] L. Paterson, Phys. Rev. Lett. 52, 1621 (1984).

[13] R. M. Brady and R. C. Ball, Nature 309, 225 (1984).

[14] M. Matshushita, M. Sano, Y. Hayakawa, H. Honjo, and
Y. Sawada, Phys. Rev. Lett. 53, 286 (1984).

[15] L. Niemeyer, L. Pietronero, and H. J. Wiesmann, Phys.
Rev. Lett. 52, 1033 (1984).

[16] F. Family, B. R. Masters, and D. E. Platt, Physica D 38,
98 (1989).

[17] G. Mackay and N. Jan, J. Phys. A 17, L757 (1984).

[18] See H. J. Herrmann, in Kinetics of Aggregation and Gela-
tion, edited by F. Family and D. Landau (North-Holland,
Amsterdam, 1984) p. 37).

[19] R. Lenormond and S. Boris, C. R. Acad. Sci. (Paris) 291,
279 (1980).

[20] R. Chandler, J. Koplik, K. Lerman, and J. Willemsen, J.
Fluid Mech. 119, 249 (1982).

[21] D. Wilkinson and J. Willemsen, J. Phys. A 16, 365 (1983).

[22] P. G. deGennes, Recherche 7, 919 (1976).

[23] D. Ben-Avraham and S. Havlin, J. Phys. A 15, L691
(1982).

[24] Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett.
50, 77 (1983).

[25] R. Blumenfeld, Y. Meir, A. Aharony, and A. B. Harris,
Phys. Rev. B 35, 3524 (1987).

[26] S. Alexander and R. Orbach, J. Phys. Lett. 43, L625
(1982).

[27] 1. Webman and Y. Kantor, in Kinetics of Aggregation and
Gelation (Ref. [18]), p. 133.

[28] L. F. Richardson, Proc. R. Soc. London Ser. A 110, 709
(1926).

[29] H. G. E. Hentschel and I. Procaccia, Phys. Rev. A 27,
1266 (1983).

[30] J. M. Ottino, Annu. Rev. Fluid Mech. 22, 207 (1990).

[31] N. Easwar, J. V. Maher, D. J. Pine, and W. I. Goldburg,
Phys. Rev. Lett. 51, 1272 (1983).

[32] A. Onuki, Phys. Lett. 101A, 286 (1984).

[33] S. Lovejoy, Science 216, 185 (1982).
[34] H. G. E. Hentschel and I. Procaccia, Phys. Rev. A 29,
1461 (1984).

[35] G. K. Batchelor, J. Fluid Mech. 5, 113 (1959).

[36] V. 1. Tatarski, The Effects of the Turbulent Atmosphere on
Wave Propagation (Keter, Jerusalem, 1971).

[37] H. G. E. Hentschel and I. Procaccia, Phys. Rev. A 28, 417
(1983).

[38] H. G. E. Hentschel and I. Procaccia, Physica 8D, 435
(1983).

[39] B. B. Mandelbrot, The Fractal Geometry of Nature (Free-
man, San Francisco, 1982).

[40] J. Feder, Fractals (Plenum, New York, 1988).

[41] T. C. Halsey, P. Meakin, and I. Procaccia, Phys. Rev.
Lett. 56, 854 (1986).

[42] C. Amitrano, A. Coniglio, and F. di Liberto, Phys. Rev.
Lett. 57, 1016 (1986).

[43] K. R. Screenivasan, Annu. Rev. Fluid Mech. 23, 539
(1991).

[44] A. Renyi, Probability Theory (North-Holland, Amsterdam,
1970).

[45] U. Frisch and G. Parisi, in Turbulence and Predictability
of Geophysical Flows and Climate Dynamics, Proceedings
of the International School of Physics “Enrico Fermi,”
edited by M. Ghil, R. Benzi, and G. Parisi (North-
Holland, New York, 1985).

[46] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia,
and B. 1. Shraiman, Phys. Rev. A 33, 1141 (1986).

[47] M. J. Feigenbaum, M. H. Jensen, and 1. Procaccia, Phys.
Rev. Lett. 57, 1507 (1986).

[48] M. J. Feigenbaum, J. Stat. Phys. 46, 919 (1987).

[49] See, for example, H. E. Stanley, Fractals and Disordered
Systems (Ref. [5]).

[50] D. Katzen and I. Procaccia, Phys. Rev. Lett. 58, 1169
(1987).

[51]J. Lee and H. E. Stanley, Phys. Rev. Lett. 61, 2945 (1988).

[52] R. Blumenfeld and A. Aharony, Phys. Rev. Lett. 62, 2977
(1989).

[53] P. A. Trunfio and P. Alstrém, Phys. Rev. B 90, 896 (1990).

[54] S. Schwarzer, J. Lee, A. Bunde, S. Havlin, H. E. Roman,
and H. E. Stanley, Phys. Rev. Lett. 65, 603 (1990).

[55]S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965
(1975).

[56] A. B. Chabra, R. V. Jensen, and K. R. Screenivasan, Phys.
Rev. A 40, 4593 (1989).

[57] B. B. Mandelbrot, C. R. Acad. Sci. 278A, 289 (1974);
278A, 355 (1974).

[58] J. P. Kahane and J. Peyriere, Adv. Math. 22, 131 (1976).

[59] C. Meneveau and K. R. Sreenivasan, Phys. Rev. Lett. 59,
1424 (1987).

[60] M. J. Lighthill, Fourier Analysis and Generalized Func-
tions (Cambridge University Press, Cambridge, 1978).

[61] T. C. Halsey and M. Leibig, Phys. Rev. A 46, 7793 (1992).

[62] B. Mandelbrot and C. J. G. Evertz, Nature 348, 143
(1990).

[62] See B. B. Mandelbrot and C. J. G. Evertz, in Fractals and
Disordered Systems (Ref. [5]).



FIG. 1. (a) A typical binary DLA cluster. Like the normal
DLA it is a fractal with ng, but in contrast to normal DLA
it has an exact binary tree structure. (b) Circles of radius of
gyration r <1 covering the mass measure fragments at each gen-
eration. The later generations are coded a darker gray for pur-
poses of visualization.
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(b)

FIG. 2. InP,,.(f,r) for clusters of (a) 5000 particles and (b)
10000 particles, showing the Markovian dynamics of DLA.
The abscissa corresponds to the length scale ratio r while the or-
dinate corresponds to the measure fraction f. The gray level is

linear in InP(f,r). The white circles correspond to the curve
f=r5/3.
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FIG. 5. InP . (f,r) for clusters of (a) 5000 particles and (b)
10000 particles, showing the Markovian dynamics of DLA.
The abscissa corresponds to the length scale ratio r while the or-
dinate corresponds to the measure fraction f. The gray level is

linear in InP oy, ( f, 7).



